4 M ay 2 00 7 The two - parameter Poisson - Dirichlet point process 1 Kenji
نویسنده
چکیده
The two-parameter Poisson-Dirichlet distribution is a probability distribution on the totality of positive decreasing sequences with sum 1 and hence considered to govern masses of a random discrete distribution. A characterization of the associated point process (i.e., the random point process obtained by regarding the masses as points in the positive real line) is given in terms of the correlation functions. Relying on this, we apply the theory of point processes to reveal mathematical structure of the two-parameter Poisson-Dirichlet distribution. Also, developing the Laplace transform approach due to Pitman and Yor, we will be able to extend several results previously known for the one-parameter case, and the Markov-Krein identity for the generalized Dirichlet process is discussed from a point of view of functional analysis based on the twoparameter Poisson-Dirichlet distribution.
منابع مشابه
The two - parameter Poisson - Dirichlet point process
The two-parameter Poisson-Dirichlet distribution is a probability distribution on the totality of positive decreasing sequences with sum 1 and hence considered to govern masses of a random discrete distribution. A characterization of the associated point process (i.e., the random point process obtained by regarding the masses as points in the positive real line) is given in terms of the correla...
متن کامل2 4 M ay 2 00 7 Spinal partitions and invariance under re - rooting of continuum random trees ∗
We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson-Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coa...
متن کاملar X iv : m at h / 06 09 48 8 v 3 [ m at h . PR ] 1 F eb 2 00 7 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS
The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence betw...
متن کاملar X iv : 0 70 4 . 09 45 v 1 [ m at h . PR ] 6 A pr 2 00 7 Gibbs fragmentation trees ∗
We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs type fragmentation tree with Aldous’s beta-splitting model, which has an extended parameter range β > −2 with respect to the Beta(β + 1, β + 1) probability distributions on which it is based. In the multifurcating case, we show that Gibbs fragmentation trees are associated with the two-parameter P...
متن کامل2 00 2 Poisson - Kingman Partitions ∗
This paper presents some general formulas for random partitions of a finite set derived by Kingman’s model of random sampling from an interval partition generated by subintervals whose lengths are the points of a Poisson point process. These lengths can be also interpreted as the jumps of a subordinator, that is an increasing process with stationary independent increments. Examples include the ...
متن کامل